Separately, we have distributed an answer sheet. You may use the space on the exam booklet for whatever temporary work you find useful, but you **MUST** enter your answers into the answer sheet. **Only the answer sheet will be graded.** Each problem that requires an answer has been numbered. Place your answer at the corresponding number in the answer sheet.

Note that any procedures or code fragments that you write will be judged not only on correct function, but also on clarity and good programming practice.

The answer sheet asks for your section number and tutor. For your reference, here is the table of section numbers.

<table>
<thead>
<tr>
<th>Section</th>
<th>Time</th>
<th>Location</th>
<th>Rec. Instructor</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9:00</td>
<td>26-314</td>
<td>Jovan Popovic</td>
<td>Toh Ne Win</td>
</tr>
<tr>
<td>2</td>
<td>10:00</td>
<td>34-301</td>
<td>Konrad Tollmar</td>
<td>Matt Peters</td>
</tr>
<tr>
<td>3</td>
<td>10:00</td>
<td>26-314</td>
<td>Jovan Popovic</td>
<td>Limor Fried</td>
</tr>
<tr>
<td>4</td>
<td>10:00</td>
<td>34-304</td>
<td>Robert Miller</td>
<td>Adnan Dosani</td>
</tr>
<tr>
<td>5</td>
<td>11:00</td>
<td>34-301</td>
<td>Konrad Tollmar</td>
<td>Matt Peters, Limor Fried, Alex Andersson</td>
</tr>
<tr>
<td>6</td>
<td>2:00</td>
<td>26-204</td>
<td>Robert Miller</td>
<td>Todd Atkins, Aaron Strauss</td>
</tr>
<tr>
<td>7</td>
<td>12:00</td>
<td>34-301</td>
<td>Michael Collins</td>
<td>Alex Andersson</td>
</tr>
<tr>
<td>8</td>
<td>1:00</td>
<td>34-303</td>
<td>Tony Eng</td>
<td>Aaron Strauss</td>
</tr>
<tr>
<td>9</td>
<td>1:00</td>
<td>34-30</td>
<td>Michael Collins</td>
<td>Samitha Samaranayake</td>
</tr>
<tr>
<td>10</td>
<td>2:00</td>
<td>34-303</td>
<td>Tony Eng</td>
<td>Todd Atkins</td>
</tr>
<tr>
<td>11</td>
<td>11:00</td>
<td>26-314</td>
<td>Fredo Durand</td>
<td>Dave Feinberg</td>
</tr>
<tr>
<td>12</td>
<td>12:00</td>
<td>26-314</td>
<td>Fredo Durand</td>
<td>Aaron Strauss, Dave Feinberg, Adnan Dosani, Samitha Samaranayake</td>
</tr>
</tbody>
</table>
Part 1: (17 points)
For each of the following expressions or sequences of expressions, state the value returned as the result of evaluating the final expression in each set, or indicate that the evaluation results in an error. If the expression does not result in an error, also state the “type” of the returned value, using the notation from lecture. If the result is an error, state in general terms what kind of error (e.g. you might write “error: wrong type of argument to procedure”). If the evaluation returns a built-in procedure, write primitive procedure, and its type. If the evaluation returns a user-created procedure, write compound procedure, and its type.

You may assume that evaluation of each sequence takes place in a newly initialized Scheme system.

Question 1.

(3 * 5)

Question 2.

(define * /)
(define / *)
(/ 12 (* 6 3))

Question 3.

(lambda (a)
 (lambda (b)
 (/ (+ a b) (- a b))))

Question 4.

((lambda (n)
 (lambda (x) (expt x n)))
 5)

Question 5.

((lambda (arg) ARG) (lambda () 5))

Question 6.

((lambda (arg) (ARG)) (lambda () 5))

Question 7.

(define (merge f g)
 (lambda (x) (g (f x))))

((merge (lambda (x) (+ x 5))
 (lambda (x) (* x 5)))
 2)
Part 2: (30 points)
We have seen an example of a tree as a data structure in lecture. A variation on this data structure is a binary tree, given by the following constructors:

\[
\text{(define (make-node elt left right)} \\
\quad \text{(list elt (make-branches left right)))}
\]

\[
\text{(define (make-branches left right)} \\
\quad \text{(list left right))}
\]

Question 8: Draw a box-and-pointer diagram for

\[
\text{(define test (make-node 3 1 5))}
\]

Question 9: Complete the data abstraction for a node, by defining get-elt, get-branches, get-left, get-right, so that, for example:

\[
\text{(get-elt (make-node 1 'foo 'bar))} \\
;\text{Value: 1}
\]

\[
\text{(get-left (get-branches (make-node 1 'foo 'bar)))} \\
;\text{Value: foo}
\]

\[
\text{(get-right (get-branches (make-node 1 'foo 'bar)))} \\
;\text{Value: bar}
\]

Of course, in practice, our branches will be other trees, not symbols. The examples above are simply intended to demonstrate the contract of the data abstraction.
Thus, a tree starts with a root node, which would contain some value (called `elt`) and pointers to the left and right branches of that node. Each branch also contains a value, and left and right branches, which are possibly empty. The idea is that we can impose an order on our tree, so that all the elements lying in the left branch of a node are “less than” the element at that node, which in turn is “less than” all the elements lying in the right branch of the node.

Here is an example of a tree, in which first 5 was inserted, then 1 and then 3. Nodes are simply represented as boxes (not to be confused with box-and-pointer diagrams in this example.

```
    /\  
   /  
  /\  
 /\  
____
```

Now we would like to create code to insert elements into a tree, such as:

```
(define empty-tree nil)
(define tree (insert 5 empty-tree))
(define tree (insert 10 tree))
```

and so on. Under this approach, each new element is inserted with a new call to `insert` and we have to redefine the name for our tree to the result of that insertion. Note that if we try to insert a value already present in the tree, the procedure should simply return the tree, without any additional insertion. Here is a template:

```
(define (insert elt tree)
  (cond ((null? tree) Q10-ANSWER)
        ((= elt (get-elt tree)) Q11-ANSWER)
        ((< elt (get-elt tree)) Q12-ANSWER)
        (else QXX-ANSWER)))
```
Answer questions 10 through 12 to complete the definition of \texttt{insert} by replacing Q10-\texttt{ANSWER}, etc. with the appropriate Scheme expressions. Be careful to use appropriate data abstractions whenever possible.

Question 10: What code is needed for Q10-\texttt{ANSWER}?

Question 11: What code is needed for Q11-\texttt{ANSWER}?

Question 12: What code is needed for Q12-\texttt{ANSWER}?

Note that QXX-\texttt{ANSWER} will be symmetric to Q12-\texttt{ANSWER}.

If we have a set of things to insert, it would be nice to have a single procedure:

\begin{verbatim}
(define tree (insert-multi '(1 5 9 3 16) nil))
\end{verbatim}

Here is the outline of a procedure to that:

\begin{verbatim}
(define (insert-multi lst tree)
 (if (null? lst)
 tree
 Q13-\texttt{ANSWER}))
\end{verbatim}

Question 13: Complete this recursive procedure by replacing Q13-\texttt{ANSWER} with a single expression that uses insert-multi and insert.

Question 14: Assuming that elements are inserted into the tree in random fashion, so that the number of elements in the left and right branch of each node is roughly the same, what is the order of growth in space and time for \texttt{insert}? Measure this in terms of \(n\), the number of nodes in the tree.

Question 15: Assuming that elements are inserted into the tree in strictly increasing order, what is the order of growth in space and time for \texttt{insert}? Measure this in terms of \(n\), the number of nodes in the tree.
Part 3: (22 points)
The procedure **reverse** can be used to reverse the elements of a list. For example, suppose **test** has the structure:

```
(define test ' (1 (2 (3 (4) 5) 6) 7))
```

then we have

```
(reverse (list 1 2 3 4))
;Value: (4 3 2 1)

(reverse test)
;Value: (7 (2 (3 (4) 5) 6) 1)
```

Question 16. Here is a recursive version of **reverse**:

```
(define (reverse lst)
  (if (null? lst)
      nil
      (append (reverse (cdr lst))
              (list (car lst)))))
```

Write the procedure **ireverse** so that it also reverses a list, but gives rise to an iterative process.

As you have noticed, **reverse** only reverses the top level structure of a list, so when given a tree structure such as **test**, it does not recursively reverse the elements of the list. **Deep-reverse** is intended to accomplish a complete reversal of the tree, for example

```
(deep-reverse test)
;Value: (7 (6 (5 (4) 3) 2) 1)
```

Assume that **leaf?** returns true if its argument is not a list or pair, and that

```
(define (map proc lst)
  (if (null? lst)
      '()
      (cons (proc (car lst))
            (map proc (cdr lst)))))
```

Below are some possible outcomes of applying different implementations of **deep-reverse** to **test**:
A: (1 (2 (3 (4) 5) 6) 7)
B: (7 (6 (5 (4) 3) 2) 1)
C: (7 (2 (3 (4) 5) 6) 1)
D: (7 6 5 4 3 2 1)
E: infinite loop
F: some other error
G: some other value

For each of the following implementations of `deep-reverse` indicate the outcome that matches.

Question 17.

```lisp
(define (deep-reverse tree)
  (if (or (null? tree) (leaf? tree))
      tree
      (map deep-reverse tree)))
```

Question 18.

```lisp
(define (deep-reverse tree)
  (if (or (null? tree) (leaf? tree))
      tree
      (deep-reverse (map reverse tree))))
```

Question 19.

```lisp
(define (deep-reverse tree)
  (if (or (null? tree) (leaf? tree))
      tree
      (reverse (map deep-reverse tree))))
```

Question 20.

```lisp
(define (deep-reverse tree)
  (if (or (null? tree) (leaf? tree))
      tree
      (deep-reverse (map deep-reverse tree))))
```

Question 21.

```lisp
(define (deep-reverse tree)
  (if (or (null? tree) (leaf? tree))
      tree
      (append (deep-reverse (cdr tree))
              (list (deep-reverse (car tree)))))
```
Part 4: (10 points)

The procedure repeated takes two arguments, a procedure p of type number → number, and a number n. Repeated returns a procedure of type number → number that will apply the procedure P n times in succession. Here is a definition:

\[
\text{(define (repeated f n)}
\text{ (if (= n 0)}
\text{ (lambda (x) x)}
\text{ (lambda (x) (f ((repeated f (- n 1)) x))))}
\]

Question 22: Using repeated, implement multiplication, using only the operations of addition, by supplying an expression for Q22-ANSWER.

\[
\text{(define (mul a b)}
\text{ Q22-ANSWER}
\text{)}
\]

Question 23: Using repeated, implement exponentiation, using only the operations of multiplication, by supplying an expression for Q23-ANSWER.

\[
\text{(define (expt a b)}
\text{ Q23-ANSWER}
\text{)}
\]
Part 5: (21 points)

We can represent DNA with a list of symbols (A, C, G, or T) representing the bases from which DNA is assembled. Suppose you are given a list of these symbols, and you want to find the longest stretch of consecutive symbols (e.g. the longest stretch of A’s in a row). Here is the outline for a procedure that would return a list of the lengths of consecutive stretches of a symbol:

```
(define (find-consecutive-sequences input)
  (define (counter runsum match todo)
    (if (null? todo)
      (list (list match runsum))
      (if (eq? match (car todo))
        Q24-ANSWER
        Q25-ANSWER))
    (counter 0 (car input) input))
  (define test (find-consecutive-sequences '(g a a g c t a a t a a a a a t a)))
  ;Value: ((g 1) (a 2) (g 1) (c 1) (t 1) (a 2) (t 1) (a 6) (t 1) (a 1))
  The idea is that this procedure keeps counting (using runsum) the number of consecutive instances of a symbol, until it reaches a new symbol. In that case, it adds a list of the symbol and number of instances to its output, and starts a new count with the next symbol.

Question 24: What code should be used for Q24-ANSWER, so that the procedure continues to count the number of consecutive symbols of the current type?

Question 25: What code should be used for Q25-ANSWER, so that the procedure adds a list of the symbol and number of consecutive instances to its output, and continues processing the rest of the list?

Here are some useful procedures for manipulating lists

```
(define (map proc lst)
 (if (null? lst)
 '()
 (cons (proc (car lst)) (map proc (cdr lst)))))

(define (filter pred lst)
 (cond ((null? lst) '())
 ((pred (car lst)) (cons (car lst) (filter pred (cdr lst)))))
 (else (filter pred (cdr lst)))))

(define (accumulate op init lst)
 (if (null? lst)
 init
 (op (car lst) (accumulate op init (cdr lst)))))

Using these, provide answers for the following questions.
Question 26: Suppose that test is the output of an application of find-consecutive-sequences such as shown above. Write an expression using map, filter and/or accumulate that will return a list of only those sequences involving the symbol a, e.g.

((a 2) (a 2) (a 6) (a 1))

Question 27: Suppose we define runs-of-a to be the result of evaluating the expression in Question 26, i.e. runs-of-a has the value ((a 2) (a 2) (a 6) (a 1)) for the example shown. Write an expression using map, filter and/or accumulate that finds the largest consecutive sequence of a’s. You may assume that max2 is a procedure that returns the larger of its two arguments.