Which program is better? Why?

A
(define (prime? n)
 (= n (smallest-divisor n)))
(define (smallest-divisor n)
 (find-divisor n 2))
(define (find-divisor n d)
 (cond ((> (square d) n) n)
 ((divides? d n) d)
 (else (find-divisor n (+ d 1)))))
(define (divides? a b)
 (= (remainder b a) 0))

B
(define (prime? temp1 temp2)
 (cond ((>= temp2 temp1) #t)
 ((= (remainder temp1 temp2) 0) #f)
 (else (prime? temp1 (+ temp2 1)))))

What do we mean by “better”?

1. Correctness
 • Does the program compute correct results?
 • Programming is about communicating to the computer what you want it to do

2. Clarity
 • Can it be easily read and understood?
 • Programming is just as much about communicating to other people (and yourself!) – An unreadable program is (in the long run) a useless program

3. Maintainability
 • Can it be easily changed?

4. Performance
 • Algorithm choice: order of growth in time & space
 • Optimization: tweaking the constant factors

Why is optimization last on the list?

One reason is Moore’s Law

Today’s lecture: how to make your programs better

• Clarity
 • Readable code
 • Documentation
 • Types
 • Correctness
 • Debugging
 • Error checking
 • Testing
 • Maintainability
 • Creating and respecting abstractions

Making code more readable

(define (prime? temp1 temp2)
 (cond ((>= temp2 temp1) #t)
 ((= (remainder temp1 temp2) 0) #f)
 (else (prime? temp1 (+ temp2 1)))))

• Use indentation to show structure

(define (prime? temp1 temp2)
 (cond ((>= temp2 temp1) #t)
 ((= (remainder temp1 temp2) 0) #f)
 (else (prime? temp1 (+ temp2 1)))))))

Making code more readable

(define (prime? temp1 temp2)
 (cond ((>= temp2 temp1) #t)
 ((= (remainder temp1 temp2) 0) #f)
 (else (prime? temp1 (+ temp2 1)))))

• Don’t put extra demands on the caller (like setting the initial values of an iterative procedure): wrap them up inside an abstraction

(define (prime? temp1 temp2)
 (do-it temp1 temp2))

(define (do-it temp1 temp2)
 (cond ((>= temp2 temp1) #t)
 ((= (remainder temp1 temp2) 0) #f)
 (else (do-it temp1 (+ temp2 1))))))

(define (prime? temp1 temp2)
 (cond ((>= temp2 temp1) #t)
 ((= (remainder temp1 temp2) 0) #f)
 (else (prime? temp1 (+ temp2 1))))))
Making code more readable

- Use block structure to hide your helper procedures

\[
\begin{align*}
\text{define (prime? temp1)} \\
(\text{do-it temp2}) \\
(\text{cond ((= temp2 temp1) #t)} \\
((= (remainder temp1 temp2) 0) #f) \\
(\text{else (do-it (+ temp2 1))}))
\end{align*}
\]

Choose good names for procedures and variables

\[
\begin{align*}
\text{define (prime? temp1)} \\
(\text{do-it temp2}) \\
(\text{cond ((= temp2 temp1) #t)} \\
((= (remainder temp1 temp2) 0) #f) \\
(\text{else (do-it (+ temp2 1))}))
\end{align*}
\]

Performance?

- Focus on algorithm improvements (order of growth in time or space)

\[
\begin{align*}
\text{(define (prime? n)} \\
(\text{define (find-divisor d)} \\
(\text{cond ((= d (sqrt n)) #t)} \\
((\text{divides? d n) #f)} \\
(\text{else (find-divisor (+ d 1))})) \\
(\text{find-divisor 2)}))
\end{align*}
\]

Summary: making code more readable

- Indent code for readability
- Choose good, descriptive names for procedures and variables
- Clarity first, then performance
- If performance really matters, then focus on algorithm improvements (better order of growth) rather than small optimizations (constant factors)
Finding prime numbers in a range

• Let's use our prime-testing procedure to find all primes in a range \([min, max]\)

\[
\text{(define (primes-in-range min max)} \\
\text{ (cond ((> min max) ’())} \\
\text{ ((prime? min) (adjoin min} \\
\text{ (primes-in-range (+ 1 min) max))} \\
\text{ (else (primes-in-range (+ 1 min) max))))}
\]

• Simplify the code by naming the result of the common expression

\[
\text{(define (primes-in-range min max)} \\
\text{ (let ((other-primes (primes-in-range (+ 1 min) max)))} \\
\text{ (cond ((> min max) ’())} \\
\text{ ((prime? min) (adjoin min other-primes))} \\
\text{ (else other-primes))))}
\]

Finding prime numbers in a range

\[
\text{(define (primes-in-range min max)} \\
\text{ (let ((other-primes (primes-in-range (+ 1 min) max)))} \\
\text{ (cond ((> min max) ’())} \\
\text{ ((prime? min) (adjoin min other-primes))} \\
\text{ (else other-primes))))}
\]

• Let's test it for a small range:

\[
\text{> (primes-in-range 0 10) ; expect (2 3 5 7)}
\]

............ d'oh! never prints a result

Debugging tools

• The ubiquitous print/display expression

\[
\text{(define (primes-in-range min max)} \\
\text{ (display min)} \\
\text{ (newline)} \\
\text{ (let ((other-primes (primes-in-range (+ 1 min) max)))} \\
\text{ (cond ((> min max) ’())} \\
\text{ ((prime? min) (adjoin min other-primes))} \\
\text{ (else other-primes))))}
\]

• Stepping shows the state of computation at each stage of substitution model

• In DrScheme:
 – Change language level to “Intermediate Student with Lambda”
 – Put test expression at the end of definitions
 \((primes-in-range 0 10)\)
 – Press (the user interface looks different, however)

• Or, without changing the language level:
 – Press Debug
 – (the user interface looks different, however)

Debugging tools

• The ubiquitous print/display expression

• Stepping shows the state of computation at each stage of substitution model

• Tracing tracks when procedures are entered or exited

• Every time a traced procedure is entered, Scheme prints its name and arguments

• Every time it exits, Scheme prints its return value

• In DrScheme:
 – Put test expression at the end of your definitions
 \((primes-in-range 0 10)\)
 – Add this code just before your test expression:
 \((require (lib “trace.ss”))\)
 \(\text{(trace primes-in-range prime? find-divisor)}\)
 – Press Run

Stepping (primes-in-range 0 10)
Oops -- primes-in-range never checks min > max

(define (primes-in-range min max)
 (let ((other-primes (primes-in-range (+ 1 min) max)))
 (cond ((> min max) '())
 ((prime? min) (adjoin min other-primes))
 (else other-primes))))

• We need to compute other-primes after checking whether min > max

(define (primes-in-range min max)
 (if (> min max)
 '()
 (let ((other-primes (primes-in-range (+ 1 min) max)))
 (if (prime? min)
 (adjoin min other-primes)
 other-primes))))

We lost track of our assumptions

(define (prime? n)
 (define (find-divisor d)
 (cond ((>= d (sqrt n)) #t)
 ((divides? d n) #f)
 (else (find-divisor (+ d 1)))))
 (find-divisor 2))

• prime? only works on a restricted domain (n ≥ 2)
 • So we shouldn't have even called it on 0 or 1. (What about -1?)
 • We probably knew this when we were writing prime?,
 but by now we've forgotten
 • All programs have hidden assumptions. Don't assume you'll remember them,
 or that another programmer will be able to guess them!
 • At the very least, we should have written this assumption down in a
 comment:
 (define (prime? n)
 (if (>= n 2) ...)

Documenting procedures

(define (prime? n)
 ; Tests if n is prime (divisible only by 1 and itself)
 ; n must be >= 2
 ; Test each divisor from 2 to sqrt(n),
 ; since if a divisor > sqrt(n) exists,
 ; there must be another divisor < sqrt(n)
 (define (find-divisor d)
 (cond ((>= d (sqrt n)) #t)
 ((divides? d n) #f)
 (else (find-divisor (+ d 1)))))
 (find-divisor 2))

(define (divides? d n)
 ; Tests if d is a factor of n (i.e. n/d is an integer)
 ; d cannot be 0
 (= (remainder n d) 0))

Finding prime numbers in a range

(define (primes-in-range min max)
 (if (> min max)
 '()
 (let ((other-primes (primes-in-range (+ 1 min) max)))
 (if (prime? min)
 (adjoin min other-primes)
 other-primes))))

• OK, now let's test it again:
 > (primes-in-range 0 10) ; expect (2 3 5 7)
 (0 2 3 4 5 6 7 9)
 hmm... let's look at 0 and 1 first

Documenting your code

• Documentation improves your code's readability, allows for
 maintenance (changing it later), and supports reuse
 • Can you read your code a year after writing it and still understand:
 ... what inputs to give it?
 ... what output it gives back?
 ... what it's supposed to do?
 ... why you made particular design decisions?

• How to document a procedure
 • Describe its inputs and output
 • Write down any assumptions about the inputs
 • Write down expected state of computation at key points in code
 • Write down reasons for tricky decisions

We lost track of our assumptions

(define (prime? n)
 (define (find-divisor d)
 (cond ((>= d (sqrt n)) #t)
 ((divides? d n) #f)
 (else (find-divisor (+ d 1)))))
 (find-divisor 2))

• prime? only works on a restricted domain (n ≥ 2)
 • So we shouldn't have even called it on 0 or 1. (What about -1?)
 • We probably knew this when we were writing prime?,
 but by now we've forgotten
 • All programs have hidden assumptions. Don't assume you'll remember them,
 or that another programmer will be able to guess them!
 • At the very least, we should have written this assumption down in a
 comment:
 (define (prime? n)
 (if (>= n 2) ...)

Documenting your code

• Documentation improves your code's readability, allows for
 maintenance (changing it later), and supports reuse
 • Can you read your code a year after writing it and still understand:
 ... what inputs to give it?
 ... what output it gives back?
 ... what it's supposed to do?
 ... why you made particular design decisions?

• How to document a procedure
 • Describe its inputs and output
 • Write down any assumptions about the inputs
 • Write down expected state of computation at key points in code
 • Write down reasons for tricky decisions
Not all comments are good

- Useless comments just clutter the code
 (define k 2) ; set k to 2
- Better: comment that says \textit{why}, rather than just what
 (define k 2) ; 2 is the smallest prime
- Even better: readable code that makes the comment unnecessary
 (define smallest-prime 2)

Wouldn’t it be better to make no assumptions?

\begin{verbatim}
(define (prime? n)
 ; Tests if n is prime (divisible only by 1 and itself)
 ; n must be >= 2
 ...

(if (< n 2)
 (error "prime? requires n >= 2, given: " n)
 (find-divisor 2))
\end{verbatim}

Another approach: write a procedure whose value is correct for all inputs (a \textit{total} function, rather than a partial function)

\begin{verbatim}
(define (prime? n)
 ; Tests if n is prime (divisible only by 1 and itself)
 ; By convention, 1 and 0 and negative integers are not prime.
 ...
 (if (< n 2)
 #f
 (find-divisor 2))
\end{verbatim}

In general, procedures that make fewer assumptions (and check them) are safer and easier to use

Did we really eliminate all the assumptions?

\begin{verbatim}
(define (prime? n)
 ...
 (if (<= "5" 1) #f (find-divisor 2))
 (<= "5" 1)
<=: expected argument of type \textless\text{real number}\textgreater; given "5"
\end{verbatim}

- Comparison is not defined for string & number: they are different types

Review: Types

- Remember (from last lecture) our taxonomy of expression types:
 \begin{itemize}
 \item Simple data
 \begin{itemize}
 \item Number
 \item Integer
 \item Real
 \item Rational
 \item String
 \item Boolean
 \end{itemize}
 \item Compound data
 \begin{itemize}
 \item Pair\textless A,B\textgreater
 \item List\textless A\textgreater
 \end{itemize}
 \item Procedures
 \begin{itemize}
 \item A,B,C,... \to Z
 \end{itemize}
 \end{itemize}
- We use this only for notational purposes, to document and reason about our code. Scheme checks argument types for built-in procedures, but not for user-defined procedures.

Review: Types for compound data

- Pair\textless A,B\textgreater
 - A compound data structure formed by a cons pair, in which the first element is of type A, and the second of type B
 \begin{verbatim}
 (cons 1 2) has type Pair<number, number>
 \end{verbatim}
- List\textless A\textgreater = Pair\textless A, List\textless A\textgreater or nil
 - A compound data structure that is recursively defined as a pair, whose first element is of type A, and whose second element is either a list of type A or the empty list.
 \begin{verbatim}
 (list 1 2 3) has type List<number>
 (list 1 "2" 3) has type List<number or string>
 \end{verbatim}
Review: Types for procedures

- We denote a procedure's type by indicating the types of each of its arguments, and the type of the returned value, plus the symbol \(\rightarrow\) to indicate that the arguments are mapped to the return value.

 e.g. \(\text{number} \rightarrow \text{number}\) specifies a procedure that takes a number as input, and returns a number as value.

Examples

<table>
<thead>
<tr>
<th>100</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(#)</td>
<td>(#)</td>
</tr>
<tr>
<td>(expt 2 5)</td>
<td>(expt 2 5)</td>
</tr>
<tr>
<td>expt</td>
<td>expt</td>
</tr>
<tr>
<td>(cons 2 5)</td>
<td>(cons 2 5)</td>
</tr>
<tr>
<td>cons</td>
<td>cons</td>
</tr>
<tr>
<td>(list "a" "b" "c")</td>
<td>(list "a" "b" "c")</td>
</tr>
<tr>
<td>(cons "a" (cons "b" "c"))</td>
<td>(cons "a" (cons "b" "c"))</td>
</tr>
<tr>
<td>(lambda (x) (* x x))</td>
<td>(lambda (x) (* x x))</td>
</tr>
<tr>
<td>(lambda (x) (if x 1 0))</td>
<td>(lambda (x) (if x 1 0))</td>
</tr>
</tbody>
</table>

Types, precisely

- A type describes a set of Scheme values.

 - \(\text{number} \rightarrow \text{number}\) describes the set: all procedures, whose result is a number, that also require one argument that must be a number.

- The type of a Scheme expression is the set of values that it might have:

 - If the expression might have multiple types, you can either use a superset type, or simply "or" the types together.

 (if p 5 2.3) ; number
 (if p 5 "hello") ; integer or string

- Scheme expressions that do not have a value (like `define`) have no type.

Types as contracts

\(+\ 5\ 10\) \(\Rightarrow\) 15
\(+\ "5"\ 10\)

\(+:\) expects type <number> as 1st argument, given: "5"

- The type of \(+\) is \(\text{number, number} \rightarrow \text{number}\)

 - two arguments, both numbers
 - result value of + is a number

- The type of a procedure is a contract:

 - If the operands have the specified types, the procedure will result in a value of the specified type.
 - Otherwise, its behavior is undefined.

 - Maybe an error, maybe random behavior.

Using types in your program

- Include types in procedure comments.
- (Possibly) check types of arguments and return values to ensure that they match the type in the comment.

```
(define (prime? n)
  ; Tests if n is prime (divisible only by 1 and itself)
  ; Type: integer \rightarrow boolean
  ; n must be \(\geq\) 2
  ... (if (and (integer? n) (\(\geq\) n 2))
    (find-divisor 2)
    (error "prime? requires integer \(\geq\) 2, given " n))
```

Summary: how to document procedures

- Write down the type of the procedure (which includes the types of the inputs and outputs).
- Describe the purpose of its inputs and outputs.
- Write down any assumptions about the inputs as well.
- Write down expected state of computation at key points in code.
- Write down reasons for tricky decisions.
Finding prime numbers in a range

```
(define (primes-in-range min max)
  (if (> min max)
      '()
      (let ((other-primes (primes-in-range (+ 1 min) max)))
        (if (prime? min)
            (adjoin min other-primes)
            other-primes)
      )))
```

> (primes-in-range 0 10) ; expect (2 3 5 7)

0 1 2 3 4 5 7 9

we understand this now

So what happened here?

Choosing Good Test Cases

- Pick a few obvious values
 - (prime? 47) => #t
 - (prime? 20) => #f
- Pick values at limits of legal range
 - (prime? 2) => #t
 - (prime? 1) => #f
 - (prime? 0) => #f

Choosing Good Test Cases

- Pick values that trigger base cases and recursive cases of recursive procedure
 - (fib 0) : base case
 - (fib 1) : base case
 - (fib 2) : first recursive case
 - (fib 6) : deep recursive case
- Pick values that span legal range
- Pick values that reflect different kinds of input
 - Odd versus even integers
 - Empty list, single element list, many element list

Choosing Good Test Cases

- Pick values that lie at boundaries within your code

```
(define (prime? n)
  ; tests if n is prime ...
  (define (find-divisor d)
    (cond ((<= d (sqrt n)) #t)
          ((divides? d n) #f)
          (else (find-divisor (+ d 1))))))

  (if (< n 2)
      #f
    (find-divisor 2))

  ; n-1 and n-2 are at the boundary of the (< n 2) test
  ; n*d^2 is at the boundary of the (>= d (sqrt n)) test
  (prime? 4) => #t  
  (prime? 5) => #t
```

Regression Testing

- Keep your test cases in your code
- Whenever you find a bug, add a test case that exposes the bug
- (prime? 4)
- Whenever you change your code, run all your old test cases to make sure they still work (the code hasn’t regressed, i.e. reintroduced an old bug)
- Automated (self-checking) test cases help a lot here:
 - (assert (assert test-succeeded message))
 - signal an error if and only if a test case fails.
 - Type: boolean, string -> void
 - (assert (not (test-succeeded)) (error message))

- If your regression test cases are simply included in your code, then pressing Run will run them all automatically
 - If some test cases are very slow, you can comment them out